Irreducibles and Primes in Computable Integral Domains

نویسندگان

  • Leigh Evron
  • Joseph R. Mileti
  • Ethan Ratliff-Crain
چکیده

A computable ring is a ring equipped with mechanical procedure to add and multiply elements. In most natural computable integral domains, there is a computational procedure to determine if a given element is prime/irreducible. However, there do exist computable UFDs (in fact, polynomial rings over computable fields) where the set of prime/irreducible elements is not computable. Outside of the class of UFDs, the notions of irreducible and prime may not coincide. We demonstrate how different these concepts can be by constructing computable integral domains where the set of irreducible elements is computable while the set of prime elements is not, and vice versa. Along the way, we will generalize Kronecker’s method for computing irreducibles and factorizations in Z[x].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Complexity of Primes in Computable Ufds

In many simple integral domains, such as Z or Z[i], there is a straightforward procedure to determine if an element is prime by simply reducing to a direct check of finitely many potential divisors. Despite the fact that such a naive approach does not immediately translate to integral domains like Z[x] or the ring of integers in an algebraic number field, there still exist computational procedu...

متن کامل

A Course on Integral Domains

My son who is in the 4 grade is learning about prime numbers and cancelling prime numbers in order to reduce fractions into lowest forms. I have told him that every number (positive integer) can be expressed as a product of primes, and surely along the road, his teachers will confirm this. We will consider this property in integral domains. We say that a divides b in the domain R, and write a |...

متن کامل

A domain - theoretic approach to computabilityon the real line 1

In recent years, there has been a considerable amount of work on using continuous domains in real analysis. Most notably are the development of the generalized Riemann integral with applications in fractal geometry, several extensions of the programming language PCF with a real number data type, and a framework and an implementation of a package for exact real number arithmetic. Based on recurs...

متن کامل

Readily Computable Green’s and Neumann Functions for Symmetry-preserving Triangles

Neumann and Green’s functions of the Laplacian operator on 30-60-90◦ and 45-45-90◦ triangles can be generated with appropriately placed multiple sources/sinks in a rectangular domain. Highly accurate and easily computable Neumann and Green’s function formulas already exist for rectangles. The extension to equilateral triangles is illustrated. In applications, closed-form expressions can be cons...

متن کامل

A NEW PROOF OF THE PERSISTENCE PROPERTY FOR IDEALS IN DEDEKIND RINGS AND PR¨UFER DOMAINS

In this paper, by using elementary tools of commutative algebra,we prove the persistence property for two especial classes of rings. In fact, thispaper has two main sections. In the first main section, we let R be a Dedekindring and I be a proper ideal of R. We prove that if I1, . . . , In are non-zeroproper ideals of R, then Ass1(Ik11 . . . Iknn ) = Ass1(Ik11 ) [ · · · [ Ass1(Iknn )for all k1,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017